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ABSTRACT-In this paper a new method for acquiring good performance of an extended Kalman Filter (EKF) for speed estimation of an 

induction motor drive is proposed. Particle swarm optimization (PSO) is used to optimize covariance and weight matrixes of the EKF, so 

that stability and accuracy of filter in speed estimation is ensured. Simulation studies on a constant V/Hz controller and its comparison with 

the results obtained from genetic algorithm under different operating conditions, demonstrates the efficiency of the proposed method. 
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1- INTRODUCTION 
Speed estimations methods have developed great interest 

among induction motor control researches in recent years. 

From the drive system point of view, elimination of speed 

sensor and associated measurement cables will result in lower 

cost and ruggedness, and more reliability. In comparison with 

nonlinear observer (Manes et al., 1994)[1], Kalman filter has 

good dynamic performance and is robust under disturbance. 

The Kalman filter is a special kind of observer that provides 

an optimized noise filtering in measurement and inside the 

system, if the covariances of these noises are known. The 

extended Kalman filter (EKF) is based on the nonlinear 

extended model of induction motor that includes rotor speed 

as a state variable. Although considerable progress has been 

achieved in induction motor drives(Henneberger and 

Kim1996; Salvatore1993)[2,3], fewer attempts have been 

made on optimization of filter performance. Since correct 

noise matrices cannot be selected based on classic theories, 

they are usually regulated experimentally and by a trial-and-

error method(Manes et al., 1994)[4]; an exhausting process 

which may not give accurate results. In this paper, PSO 

algorithm is used for optimization of noise covariance 

matrices to achieve best EKF performance. Simulation 

studies are conducted on a constant closed-loop V/Hz 

controller to satisfy the need for the optimized EKF. The 

simulation was also conducted with GA algorithm, in which 

the obtained results were not so reliable. 

2- EKF algorithm for rotor speed estimation 

To illuminate the problem of induction motor estimation, 

more details of this subject are discussed in this section. As 

shown in the figure below, the optimum estimator - that is 

Kalman filter – can be implemented with respect to the 

conducted measurements on the available motor voltage and 

currents, and hence goal states can be defined (Velazquez 

2004; Bolognani 2003; Shi 2002)[5,6,7]. 

 
Fig 1. General statement of the problem of the induction motor 

rotor speed estimation. 

In figure above, some parameters are considered in different 

conditions in which each parameter has its own role as the 

goal or the input. In this figure Kalman filter acts as the main 

brain of the system and will generate the optimum outputby 

receiving the inputs. 

As the governing equations of induction motor are very 

nonlinear, it seems necessary to employ an appropriate 

method which responds to this nonlinear problem. Employing 

nonlinear Kalman algorithm makes the optimum 

implementation of this problem possible. 

Albeit it must be noted measurements in this problem only 

include electrical currents, and linkage flux is took into 

account in states. 

Employing Kalman algorithm in rotor speed analysis requires 

some fundamental steps. In the first step governing dynamic 

equations of the system must be written. These equations 

must be based on the relative equations between states and 

measurements. At first the states to be estimated are 

determined. The state matrix in this problem is defined as 

below: 

(1) 
0[ ]T

ds qs dr qri i     

To implement the estimation algorithm, dynamic equations 

must be discretized. The system dynamic transition matrix 

will be as below (Shi et al., 2002): 
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Where Ts is the sampling time interval, and we have: 

(3)          
System priori estimation can be performed with respect to the 

governing dynamic equations of the system. It must be noted 

these equations are written for a goal with constant speed. 
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But the equations would be different for a variable speed 

motor. 

Covariance matrix of priori estimation is obtained by the 

following equation: 

(4) 
' 2

1 . ov_ .K H C mat H    

 

Where Cov_mat in this equation is the estimation covariance 

matrix after post-priori estimation. 

In each iteration, post-priori estimation can be done after 

receipt of ampere-meter measurements information. To 

perform this estimation, at first the gain of Kalman algorithm 

must be computed. This quantity illustrates the dependence 

degree of the algorithm to the measurement, namely direct 

current and quadrature current of the stator: 
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In nonlinear Kalman algorithm, the implemented equations 

revolve linearly around operating point. The operating point 

is also obtained by the estimation of the algorithm itself. This 

closed chain is the basic idea of extended Kalman filter. For 

linearization in this problem, only structure matrix; i.e. H 

matrix, is linearized. This matter is stated in figure below: 

(6) 

1 0 0 0 0
[ ]
0 1 0 0 0

kH S 
 

In the equation above,   is the measurement noise. In fact 

this quantity shows the standard deviation of the ampere-

meter noise. Finally, post-priori estimation is performed as 

below: 

(7) 
'

1 1 ([ ] * )k pp k ds qsS S k i i H  
 The covariance matrix equation after post-priori estimation is 

as below: 

(8) 4 4_ ( . ). _ 1Cov mat I k H Cov mat 
  

At each iteration of the algorithm, Cov_matmatrix loses its 

symmetry. So, the below formula is used to keep the 

symmetry of this matrix: 

(9) 
'_ ( _ _ ) / 2Cov mat Cov mat Cov mat 

 By complete formation of the modelof the nonlinear Kalman 

filter for rotor speed analysis, simulations based on this filter 

can be performed. 

As PSO algorithm is used in the proposed Kalman algorithm, 

a brief explanation of this algorithm is provided in following. 

3-  PSO Algorithm 

Intelligent systems have successful implementation in 

algorithm models design for function optimization.PSO was 

first introduced by Kennedy and Eberhart as a public 

intelligence. The initial idea of this random optimization 

algorithm is the simulation of the social behavior of birds in a 

flock (Shi  2002; Eberhart 1999; Xin 2011)[8,9,10]. In PSO 

method, each element of the set is a candidate solution which 

tracks the proximity of other elements to the solution, and 

will imitate their behavior if they are superior. This 

cooperation results in the facility of final optimum solution 

achievement. During optimization, each element or particle’s 

best position (pbest) and best position among all particles 

(gbest) are always recorded. It is clear that tracking gbest is a 

way for sharing information. PSO is a repetition based 

algorithm with a simple formula, which makes it appropriate 

for searching purposes. The formulation procedure is given in 

following. 

With the assumption of presenting N particles in k-th 

iteration in the following form: 

(10)  1 ,............................,k k k

n nX X X
 

Where xn
k
= [ln , un], and un and ln are the upper bound and 

lower bound for n-th particle; respectively. In the first 

iteration the particles value is selected randomly. 

The velocity vector at that iteration is shown as below: 

(11)  1 ,............................,k k k

n nV V V
 

Each particle moves with a certain velocity between Vmin,n
k
 

and Vmax,n
k
 in the search space to have dominance on the 

searched space. This will cause more solutions to be checked. 

With the assumption of function J as objective function, this 

function must be minimized by PSO algorithm. This 

minimization will result in proximity of estimated signal to 

the measured signal. Objective function J is stated as formula 

below: 

(12)    
2

( ) ( ) .J k X est k X mea k  
 In this formula X_est(k) and X_mea(k) are estimated values 

and real values for signal X; respectively. By calculating 

objective function, the position of each particle is 

subsequently updated by formulas below: 
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In above equations, pbestn is the best previous position of n-

th particle, gbestis the position of best article among all 

articles, r1 and r2 are random variables in range of (0,1), c1 

and c2 are positive constants, and w is inertia weight. 

The higher values of inertia weight facilities global search, 

and its lower values are appropriate for local search. Hence, 

this accommodation causes algorithm capability in optimum 

search so that less iterationis needed for convergence. In each 

iteration, PSO algorithm is employed for estimation of noise 

matrix elements and then KF estimates the states. Finally by 

using estimated values, objective function is formed and 

particles’ position is subsequently determined. This 

processing is repeated until achieving an acceptable solution. 

Figure 2 shows PSO algorithm flowchart. 

4- Problem definition and its governing equations 

In this project the goal is to estimate the states related to the 

model of an induction motor. These states include current, 

flux linkage, and rotor speed. The main goal of this project is 

determination of last parameter which is rotor speed. 

According to the equations presented for Kalman filter, at 

first the matrix of system model must be implemented. This 

matrix has a general form similar to equation (2). In the 

above matrix, we have: 
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Fig 2. PSO algorithm flowchart. 
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The remaining parameters are obtained from the quantities 

related to the motor under study. For an induction motor with 

the presented matrix model above, the states are defined 

according to the vector of equation (1). As it is seen, these 

states include direct current and quadrature current of the 

stator, direct flux linkage and quadrature flux linkage of the 

rotor, and rotor speed. Rotor speed is the mail goal in 

estimation of parameters. 

The proportion matrix and initial matrix are also as below; 

respectively: 

In order to perform the simulation, firstly the parameters of 

the considered motor must be determined. For the motor 

under study the parameters below are defined. 

Rr=0.161;Lr=0.000745;Lm=0.0393;Ls=0.0014;Rs=0.288; 

Time step of the simulation is 0.0001 second. Initial values 

for states are also determined by the vector below: 

(15) [1 1 1 1 1]T

 Also the covariance matrix has the form below in first 

iteration: 

(16) 
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The initial values of PSO algorithm are as below: 

Wmin=0.4;Wmax=0.9;c1=2.8;c2=1.2;r1=rand;r2=rand; 

It is reminded that PSO algorithm optimizes the model noise 

matrix and measure noise matrix. The measurements include 

direct current and quadrature current of the stator. In each 

iteration of the algorithm the optimum values are selected 

from noise matrices by PSO, and then these values are 

applied to the Kalman filter, and the states are estimated 

using the measurements. The last estimated parameter is the 

goal parameter, i.e. rotor speed. Before applying Kalman 

algorithm, the measurements must be created virtually. This 

is done by a simulation in the MATLAB Simulink 

environment. 

By using outputs of this simulation and created parameters, 

the related code of the algorithm can be employed to achieve 

desired answer. In the following the simulation results are 

presented and explained. The first studied case is direct 

current of the stator which is shown in figure 4. 

 
 

Fig 4.Direct current of the stator at the frequency of 60 Hz. 

 

Since filter estimation has acceptable performance and is very 

close to the real value, the estimated value must be analyzed 

from a close view to have correct comprehension of filter 

performance. In the following, direct current of the stator is 

shown from close view in figure 5. 
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Fig 5. Direct current of the stator from close view. 

As it takes a certain time for motor to reach its nominal speed 

from starting, there is a transition state in this period. The 

frequency and flux linkage of the rotor varies during this 

period. Due to this reason filter spends a longer time to reach 

to the correct value, which is shown in figure 6. 

 
Fig 6. Direct flux linkage with rotor at the frequency of 60 Hz. 

The last state which must be estimated and is also the main 

goal of this work is the rotor speed. This parameter is not 

traceable by filter, unless the rotor reaches its nominal speed. 

But after the moment rotor reaches the nominal speed, an 

acceptable trace is performed by the filter which is illustrated 

in figure below: 

 
Fig 7. Tracing of rotor speed by filter at the frequency of 60 Hz. 

In this simulation the obtained values from PSO algorithm 

are given in the Table 1. 

 
Table 1. Value of model noise elements and measure noise 

elements in PSO algorithm 

P7 P6 P5 P4 P3 P2 P1 

0.0799

*10^-3 

0.3506

*10^-3 

0.2048

*10^-6 

0.6084

*10^-8 

0.1569

*10^-8 

0.8792

*10^-8 

0.5838

*10^-8 

 

It is evident that by every simulation execution, the solutions 

will change a little due to randomness of PSO algorithm. The 

parameters P1 to P5 are related to the model noise elements. 

The remaining parameters are related to the measure noise 

elements. 

To verify Kalman estimator performance, another speed is 

needed to be examined. For this purpose the Simulink 

simulation is set for the new speed. The practical method for 

this work is to employ a V/f controller to prevent core 

saturation and core damage. The stator frequency is set on 50 

Hz for this simulation. Albeit there is no need to change the 

motor voltage in simulation. The filter must trace the speed as 

before, which is shown in figure 8. 

The estimation of current and flux linkage at frequency of 50 

Hz are shown in figure 9 and figure 10; respectively. 

 

 
Fig 8. Tracing rotor speed by filter at 60 Nm load. 

 
Fig 9. Direct flux linkage with rotor at the frequency of 50 Hz. 
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Fig 10. Direct stator current at the frequency of 50 Hz. 

To investigate the continuous operation of estimator, it must 

be examined in different continuous speeds. In this paper a 

simple two-speed source is used to create different speeds. 

The form of sources that can produce two-speed condition is 

given below. 

 

 
Fig 11.Required sources to produce two-speed condition (The 

other two phase are like the first phase). 

The sources are tuned so that at first the motor synchronous 

speed would be 1200 rotations per minute. Then after 5 

seconds, the synchronous speed is reduced to 800 rotations 

per minute and must stay at this speed for 5 seconds. For this 

purpose the frequency and voltage of the motor are decreased 

simultaneously. This estimator performance in two-speed 

control is shown in figure 12. 

It must be noted that estimator performance at the moment of 

changing controller’s speed is very important. It is because in 

the case of instability, there is the possibility of estimator 

divergence in this point. Figure 13 shows the estimator 

performance at the moment of changing the speed. 

In the final test for approaching to the real situation, 

conducting the simulation by a power drive can be very 

helpful. In this test, at first a simulation based on constant 

V/F control speed drive is performed on an induction motor. 

The speed set point is considered in the associated input so 

that an alternating current is created. The speeds from this 

simulation in MATLAB environment are estimated by the 

code written for it. The simulated drive is in fact a closed-

loop speed control circuit. Figure 14 shows the view of 

 
Fig 12.Estimation result in two-speed control of induction 

motor. 

 
Fig 13.Estimator performance at the moment of applying 

secondary speed to motor. 

performing this simulation in Simulink environment In the 

above simulation, the induction motor drive block consists of 

subdivisions of motor parameters, converter properties, and 

also driver properties. The demux part will also produce 

outputs. These outputs are transferred to the Matlab 

environment to be used for performing simulation. An 

arbitrary alternating speed is applied to the system at the 

speed input. A sample of performing simulation for motor 

speed estimation is shown in figure 15. 

As it is seen in the figure, the amount of estimated speed 

noise is a little greater than previous cases. It is a natural 

process in power drives since despite the fact that driver is 

following set point; controller always fluctuates around the 

specified point. This fluctuation brings fluctuation to all 

electrical and mechanical quantities of motor, and hence filter 

also estimated them. 
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Fig 14. The simulation of constant V/F control speed drive. 

 

 

 
Fig 15.A sample of performing simulation for motor speed 

estimation with constant V/F drive. 

 

5- CONCLUSION 
This paper presents a new method for performance 

optimization of EKF to estimate speed for an induction motor 

drive. Based on PSO with real code, the optimization 

algorithm provides noise covariance and weight matrices. 

Noise covariance and weight matrices are critically 

dependent to the EKF performance, and are chosen properly. 

The simulation studies on the two induction motor drives, i.e. 

constant V/Hz driver, prove the proposed viewpoint to be 

appropriate. 
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